Disintegration of Projective Measures Dorin Ervin Dutkay and Palle

نویسندگان

  • E. T. JORGENSEN
  • David R. Larson
  • Peter Walters
چکیده

In this paper, we study a class of quasi-invariant measures on paths generated by discrete dynamical systems. Our main result characterizes the subfamily of these measures which admit a certain disintegration. This is a disintegration with respect to a random walk Markov process which is indexed by the starting point of the paths. Our applications include wavelet constructions on Julia sets of rational maps on the Riemann sphere.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Disintegration of Projective Measures

In this paper, we study a class of quasi-invariant measures on paths generated by discrete dynamical systems. Our main result characterizes the subfamily of these measures which admit a certain disintegration. This is a disintegration with respect to a random walk Markov process which is indexed by the starting point of the paths. Our applications include wavelet constructions on Julia sets of ...

متن کامل

ar X iv : m at h / 04 08 15 1 v 2 [ m at h . C A ] 2 7 Ju l 2 00 5 DISINTEGRATION OF PROJECTIVE MEASURES

In this paper, we study a class of quasi-invariant measures on paths generated by discrete dynamical systems. Our main result characterizes the subfamily of these measures which admit a certain disintegration. This is a disintegration with respect to a random walk Markov process which is indexed by the starting point of the paths. Our applications include wavelet constructions on Julia sets of ...

متن کامل

ar X iv : m at h / 04 07 51 7 v 2 [ m at h . C A ] 3 0 Ju l 2 00 4 OPERATORS , MARTINGALES , AND MEASURES ON PROJECTIVE LIMIT SPACES

Let X be a compact Hausdorff space. We study finite-to-one map-pings r : X → X, onto X, and measures on the corresponding projective limit space X∞(r). We show that the invariant measures on X∞(r) correspond in a one-to-one fashion to measures on X which satisfy two identities. Moreover, we identify those special measures on X∞(r) which are associated via our correspondence with a function V on...

متن کامل

Oversampling Generates Super - Wavelets

We show that the second oversampling theorem for affine systems generates super-wavelets. These are frames generated by an affine structure on the space L 2 (R d) ⊕ ... ⊕ L 2 (R d) p times .

متن کامل

ar X iv : m at h / 04 07 51 7 v 1 [ m at h . C A ] 2 9 Ju l 2 00 4 OPERATORS , MARTINGALES , AND MEASURES ON PROJECTIVE LIMIT SPACES

Let X be a compact Hausdorff space. We study finite-to-one map-pings r : X → X, onto X, and measures on the corresponding projective limit space X∞(r). We show that the invariant measures on X∞(r) correspond in a one-to-one fashion to measures on X which satisfy two identities. Moreover, we identify those special measures on X∞(r) which are associated via our correspondence with a function V on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006